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Abstract. A new decoration method is presented which allows the quenched, randomly 
diluted site-bond, spin-1 king model on a regular lattice along a line in the plane of exchange 
interaction parameters versus temperature to be mapped onto a certain class of mixed-spin 
decorated-lattice problem. Approximate results for the quenched, randomly diluted site- 
bond, spin-1 king model on the honeycomb lattice are obtained through the use of the 
exact solution of the annealed model on the corresponding decorated lattice. The critical 
temperature and the magnetisation of the diluted system as functions of site and bond 
concentrations are calculated in detail. 

1. Introduction 

In recent years, much interest has been attracted to the thermodynamic properties 
of diluted magnetic systems. The random spin system can have two distinct kinds of 
thermodynamic behaviour [l]. In the first (quenched) case, the randomness is frozen in 
and does not change with temperature. In the second (annealed) case, the system is 
allowed to come into thermal equilibrium at each temperature. The annealed case is 
mathematically more tractable than the quenched case because it involves averaging the 
partition function rather than the free energy as in the quenched case. Several exact 
results have been obtained in the annealed limit [2-71, whereas no solution exists to date 
for the quenched problem. 

More recently McGurn [8,9] has proposed an exact mapping between the quenched, 
randomly diluted site (or site-bond), spin4 Ising model defined on certain decorated 
lattices and the site (or site-bond) problem on the undecorated lattice. He uses this 
mapping together with the corresponding annealed limit solution on the decorated 
honeycomb lattice and obtains the first closed-form approximation to the thermo- 
dynamic properties over the entire temperature range for the quenched, randomly 
diluted site and site-bond, spin4 Ising model on the honeycomb lattice. The critical 
temperature and the critical concentration obtained in this manner are found to agree 
well with perturbation theory results [lo] in the low-dilution limit and the best known 
value [ll], respectively. This method has also been successfully used to study the 
quenched, randomly diluted site-bond, spin4 Ising model on the square lattice [12]. 
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Figure 1. ( a )  Portion of the honeycomb lattice. ( b )  Portion of the decorated honeycomb 
lattice: 0 sites occupied by decorated spins 1 ( 5 ) ;  X ,  sites occupied by spins (U). 

This technique, however, cannot be directly applied to systems of arbitrary spin value 
because the existence of the mapping between the two random systems mentioned above 
depends on the specific spin value. It is easily seen that no mapping exists if we replace 
spins 1 in these two disorder Ising models by spins 1. It is for this reason that this technique 
has not yet been applied to the quenched, spin-1, random system. 

The spin-1 , isotropic, Blume-Emery-Griffiths (BEG) model in which the crystal-field 
interaction is absent is described by the Hamiltonian 

-PH = c. J S J ,  + KS;?Sf (1.1) 
(1.1) 0 .1 )  

where SI  = 0, k l ;  Z(r , l )  indicates summation over the nearest-neighbour pairs of sites. 
The exact solution of the transition temperature of the anisotropic BEG model on the 
honeycomb lattice under the restriction 

exp(K) cosh(J) = 1 (1.2) 
has been obtained by Horiguchi [13] and Wu [14]. Kivelson et a1 [15] extend this model 
to when there is a complex magnetic field coupled to spins and Shankar [16] solves this 
model rigorously when the complex magnetic field takes some special values. The exact 
solution of the annealed, diluted-site, anisotropic BEG model on the honeycomb lattice 
under the same restriction has been found by Urumov [17]. 

The random-site-bond problem is another kind of disorder and has been studied in 
connection with the theory of polymer gelation [18]. In this paper we shall present a new 
decoration method to achieve an exact mapping of the quenched, randomly diluted site- 
bond isotropic BEG model on a regular lattice with the above restriction on the exchange 
interaction parameters versus temperature onto the quenched, randonly diluted site and 
bond, mixed-spin Ising model on the decorated lattice. Using this mapping and the 
annealed model solution of the corresponding decoration problem as an approximation 
to the quenched decorated mixed-spin system, we work out the thermodynamics of the 
quenched, randomly diluted site-bond, spin-1 Ising model on the honeycomb lattice. 

2. Mapping 

Figure l(a) shows a two-dimensional honeycomb lattice in which a fraction of the bonds 
between sites and a fraction of the sites are randomly removed so that the concentrations 
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of bonds and sites arep andx, respectively. The Hamiltonian of the quenched, randomly 
diluted site-bond, spin-1 Ising model which consists of bilinear and biquadratic exchange 
interaction terms is given by 

where b ,  (= 0 or 1) is the bond-occupancy operator, and c, (= 0 or 1) is the site-occupancy 
operator. The bilinear (J > 0) and biquadratic ( K )  exchange interaction parameters are 
only between nearest-neighbour spins. 

With the restriction of equation (1.2), the diluted site-bond Ising system of equation 
(2.1) can be mapped onto the decorated mixed-spin system shown in figure l ( b )  in which 
the site disorder and the bond disorder are decoupled from one another. 

In figure l ( b ) ,  the sites represented by open circles are diluted with a fraction of x 
being present while the sites represented by crosses and those represented by full circles 
are permanently occupied by the decorated spins 2 (a,) and spins 1 (&), respectively. 
The bonds between neighbouring crosses and the full circles on these bonds are diluted 
with a fraction of p being present. The bonds between nearest-neighbour open circles 
and crosses are not diluted. 

The Hamiltonian of the decorated system in figure l ( b )  is then 

Here E(,,,) is over nearest-neighbour pairs of spins on the disorder sublattice. a, and a, 
are the decoration spins on the bond between S, and S,. &is also the decoration spin but 
on the bond between a, and a,. J ’ (  >0) is the nearest-neighbour bilinear coupling 
parameter. 6 is the crystal field of the random spin S, in the decorated system. For 
simplicity the crystal field of the spins 5, is not considered here since these spins are not 
diluted. The occupation operators c, and b ,  are the same as those in equation (2.1). 

The mapping of the quenched limit partition function of the random system of 
equation (2.1) onto that of the decorated system of equation (2.2) can be carried out as 
follows. 

Equation (2.2) can be rewritten as 

where 

is the partition function of the quenched, diluted, mixed-spin Ising model on the dec- 
orated lattice. 

In order to calculate the partition function of (2.5) we shall first perform the trace 
over the decoration spins. A convenient way is to start from the calculation for one single 
decorated bond. For each bond between two neighbouring random sites in the decorated 
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Table 1. Configurations and the corresponding probabilities of occurrence. 

Probability 
(c,, cl. b,J Configuration of occurrence 

system there are six possible different bond configurations which are shown in table 1 
for -/3Hhd); their probabilities of occurrence are also listed. 

We now determine the traces of the decoration spins ol, o, E,  in the factor exp 
( - / 3 H f ) ) ,  referring to the bonds in table 1. 

For case (a)  in table 1, we have 

Tr [exp(-@Hbd))] = 2exp[-$G(S? + S?)]{[l + 2 cosh(W’)] 
f J P , E i  

X C O S ~ [ ~ J ’ ( S ,  + S,)] f 3 cosh[J‘(S, - S,)]} (2.6) 

= A  exp(JS,S, + KSfS:). (2 .7 )  

A = 4[2 + cosh(U‘)] (2.8) 

exp(K) = exp(J - 3)[ l  + 5 cosh(2J’)]{2[2 + cosh(2J’)]}-’ (2.10) 

exp(-G)[c~sh(J ’ ) ]~  = 1. (2.11) 

Here 

exp(2.l) = (3 + cosh(2Jf)[1 + 2cosh(2J’)]}[l + 5 cosh(21’)]-’ (2.9) 

From equations (2.9)-(2.11) it can be easily proved that J and K automatically satisfy 
the relation (1.2). 

Also we have the following. For case ( b ) ,  

Tr  [exp( - /3Hy))]  = 12. (2.12) 
ofJi5i 

For case (c), 

Tr  [exp( - / 3 H f ) ) ]  = 4[2 + cosh(2J’)]. 
O,O,El 

For case ( d ) ,  

Tr [exp( -/3HLd))] = 12. 
O,OiEi 

For case ( e ) ,  

Tr [exp( -/3Hi,4)] = 4[2 + cosh(2J’)I. 
O,fJ,El  

(2.13) 

(2.14) 

(2.15) 

For case (f), 
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Tr [exp( -/?Hf,@))] = 12. 
010,ei 

(2.16) 

In the above calculation of equations (2.12)-(2.14), we have used the relation (2.11). 
According to the above calculation for all different types of bond configuration, the 

contributions from bonds where one or both of the neighbouring random sites are absent 
(or non-magnetic) only enter the partition function as multiplicative constants. When 
both random sites are present, a spin-dependent contribution of equation (2.7) is 
obtained. 

Taking the traces of all the decoration spins in equation (2.5), we have 

Z ( d ) ( J 1 ,  6) = {(4[2 + COS~(~J’)])P~~(’-~)}~~~~Z(J, K )  (2.17) 

where N is the number of sites on the random sublattice, Z is the coordination number 
of the random sites and Z ( J ,  K )  is the partition function of the Hamiltonian in equation 
(2.1). Hence the exact mapping between the partition function of the system in equation 
(2.1) onto the partition function of the system in equation (2.2) is obtained. It should be 
pointed out that this mapping is valid not only for honeycomb and decorated honeycomb 
lattices but also for any other two-dimensional regular lattice and its corresponding 
decorated lattice. 

Using this mapping in conjunction with the annealed limit solution for the partition 
function of the system in equation (2.2) as we shall discuss in the following, we can obtain 
an approximation to the thermodynamics of the quenched, diluted site-bond, spin-1 
Ising model on the honeycomb lattice. 

3. Thermodynamics 

The Hamiltonian of the annealed model on the decorated honeycomb lattice is given by 

- gs(c;s: + cis; ,  + Qa(ci + C j )  + b p ]  (3.1) 

where the last two terms are introduced to account for the numbers of the occupied sites 
and occupied bonds. The variables LY and U can be eliminated by using the following 
relations: 

x = (1/N)a{ln[zc,d,,(J’, 6, a, v ) ] } / a a  

p = (2/3N)a{ln[Zc,d,,(J’, 6 ,  LY, v ) ] } / d v .  

(3.2) 

(3.3) 

Here 

+ J‘b,&(a, + U,)  - gS(c,s; + c,s;) 

+ da(c, + c,) + v b , ]  11 (3.4) 

is the partition function of the Hamiltonian in equation (3.1). 



8620 Zhen-Lin Wang and Zhen-Ya Li 

Figure2. PortionoftheIsinglatticeforZ,,,,(D, S) 
with the  usual spins u = & I .  

The partition function of (3.4) can be evaluated by taking the trace of ci ,  b,,  Si and 
E ,  as 

Z(,",,(J', 6, a,  v )  = BNC3N/2Z  pure(D, S )  (3.5) 
where Zpure(D, S) is the partition function of the pure spin-4 Ising system on the lattice 
shown in figure 2 with couplings D and S as indicated. 

The parameters in equation (3.5) are given by 

B4 = (3 + exp(a)[l  + 2 exp(-g) c o ~ h ( J ' > ] } ~  

x ( 3  + exp(a)[l  + 2 exp(-g) cosh(3J')I) (3.6) 
exp(4D) = (3 + exp(a)[l + 2 exp(-6) cosh(3J')I) 

x (3 + exp(a)[l  + 2 exp(-6) cosh(J')]}-' 

C2 = 3[1 + exp(v)](3 + exp(v)[l + 2cosh(2J')]} 

exp(2S) = (3 + exp(v)[l + 2 cosh(2Jr)]}/3[1 + exp(v)]. 

The concentrations x and p can be expressed as 

x = (32[cosh(2Jf) - 1]}-'{[1 + 3&,(D, S)][l - exp(-4D)][9 cosh(2J') - 31 

+ [3 - 3&,(D, S)][exp(4D) - 1][cosh(2Jf) + 51) (3.10) 

and 

p = {4[cosh(2Jf) - 1]}-,{3[1 - E*(D, S)][exp(2S) - 11 

+ [l + 2 cosh(2J')][l + E*(D, S)][l - exp(-2S)]) (3.11) 

where E,(D, S) is the correlation function between the nearest-neighbour spins coupled 
by the D bond in figure 2 and E*(D,  S) is the correlation function between nearest- 
neighbour spins coupled by the S bond in the same system. 

At the critical point for the system in figure 2, D and Sin equations (3.10) and (3.11) 
should be replaced by the critical values D, and S,, respectively, and then x andp can be 
given in terms of the critical temperature of the decorated system. 

exp(21,) = (3 + cosh(2J;)[l + 2 cosh(2J~)]}[l + 5 cosh(2Jd)l-' (3.12) 

which relates the critical temperature of our system in (2.1) to that of the decorated 
system in (2.2). Thus, given a value for],, we can obtain J l  by the use of equation (3.12) 
and hence x and p from equations (3.10) and (3.11) calculated for D, and S,. 

We also have the following relationship: 
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X 

Figure 3. Contours of constant T,(x,p)/T,(l, 1) in the plane of x - p for the quenched, 
diluted site-bond, spin-1 king system on the honeycomb lattice (xis the site concentration, 
andp the bond concentration). 

In figure 3 we have plotted the contours of constant T,(x, p)/T,(l, 1) against x andp 
for the system in equation (2.1) by detailed numerical calculation. The contours reduce 
to the pure, diluted bond system results when x = 1, and the pure, diluted site system 
results when p = 1 respectively. The percolation value x,  is 0.8995 when p = 1 and the 
percolation valuep, is 0.888 whenx = 1. The critical value ofJ i s  1.317 whenx = p = 1. 

A comparison with the exact known results can be made here. When x = p = 1, our 
results reduce to the exact results obtained by Horiguchi [13] and Wu [14]. It should be 
noted that the resultsin the non-dilution limit obtained by Urumov [17] are not consistent 
with the exact results [13, 141. For example, in the non-dilution limit the critical tem- 
perature in the absence of the crystal field used in [17] differs drastically from that of 
figure 3 in [ 131. 

The magnetisation of the system in equation (2.1) for J is easily proved to be equal 
to that of the system in equation (2.2) for J ’ ,  where J’ is related to J by equation (2.9). 
We shall approximate this magnetisation by that of the annealed system in equation 
(3.1). 

The magnetisation of the system in equation (3.1) is given by 

(3.13) 

This can be calculated as 

where 

F = {[l - exp(-4D)]/[cosh(3J’) - cosh(J’)]}$[sinh(3J’) + exp(4D) sinh(J’)] (3.15) 

G = {[l - exp(-4D)]/[cosh(3J’) - cosh(J’)]}~[sinh(3J‘) - 3 exp(4D) sinh(J’)]. (3.16) 

Here D and S are as in equation (3.10). (u ) (D ,  S) is the magnetisation of the pure Ising 
system with the usual 0 = ? 1 spins in figure 2 and (u1u2u3) is the three-spin correlation 
function of the spins at the vertices of the triangle in the same system [9]. 
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Figure 4. Magnetisation against T/Tc( 1, 1) for various values of x andp.  

In figure 4, the magnetisation of the system in equation (2.1) in this approximation 
is plotted against T/Tc ( l ,  1) for various values ofx andp. In the vicinity of the transition 
point, the magnetisation vanishes rapidly. For temperatures lower than the transition 
temperature, the magnetisation decreases very slowly with increase in temperature. We 
note that in the low-temperature limit our results when x = p = 1 differ from those in 
[ 191. We recognise that all the derivations of equations in [ 191 are rigorous but our results 
of detailed numerical calculation of equations derived in the same way as Urumov [ 191 
are consistent with our non-dilution limit results calculated from equations (3.15) and 
(3.16). The magnetisation at zero temperature when x = p = 1 is 0.8395. We are sure 
that this value is more accurate than that in [19]. The critical exponents of the annealed 
solutions are different from those of the quenched system and the specific heat obtained 
in this manner near the transition point is not very good [8]. Hence we have not pursued 
these in this paper. 

4. Conclusion 

We have presented a new decoration method and obtained an exact mapping of the 
quenched, site-bond randomly diluted, spin-1 Ising model under certain restrictions on 
the exchange interaction parameters onto a class of decorated Ising systems. 

We have used this mapping in conjunction with the annealed model solution of the 
decorated mixed-spin system to calculate approximately the critical temperature and 
magnetisation of the quenched, site-bond, spin-1 Ising system along a line in the plane 
of the exchange interaction parameters. All the results in the non-dilution limit reduce 
to the exact results. We expect our results to be quite good representations of the 
behaviour of the quenched, spin-1 Ising model in the above subspace. 
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